
JPL Summer Internship
Final Report

James † , Cristopher →

†
2024 Summer Intern

Jet Propulsion Laboratory, California Institute of Technology

Bunker Hill Community College - Charlestown, MA

james @jpl.nasa.gov
→

Software Quality Assurance Engineer

Jet Propulsion Laboratory, California Institute of Technology

cristophe @jpl.nasa.gov

Abstract—Cyber Security Assurance (CSA) assessors

are tasked with reviewing cyber security for flight missions

and ensuring that the processes and systems implemented

are following all guidelines that have been defined for it to

follow. While these guidelines and requirements have been

well-defined within the NIST SP800-53 and NIST SP800-

37 documents, there is still much to be desired with the

process of conducting these assessments. Today, when an

CSA assessor conducts an assessment, the primary tool

they use to complete their work is Microsoft Excel. This

document presents CyberCAT, a web-based tool based on

Cristopher ’s original concept and idea with

the goal of helping Cyber Security Assurance Assessors

conduct and complete assessments.

I. INTRODUCTION

CyberCAT is a web-based assessment tool that
can be used to help cyber security assurance asses-
sors conduct and complete assessments

During my internship, I had the opportunity to
apply the skills I have learned in web develop-
ment to build an enterprise web application that
will allow Cyber Security Assurance assessors to
conduct and complete their assessments with a tool
that complements the institutional tool, specifically
the Risk Information Security Compliance System.
This application aims to provide assessors with a
streamlined experience in conducting and tracking
the progress of assessments, enabling them to simul-
taneously work on the same assessment and stay up-
to-date on progress. Before I joined this project, it
was decided that the application would be built with
Django, Django Rest Framework (DRF), Vue.js,
and Vuetify. My mentor, Cristopher , also

brought on User Interface/User Experience designer
Steven , who has a wealth of experience
in designing user interfaces to ensure they are easy
to understand and use, regardless of whether the
user has conducted several assessments in the past
or if this is the first assessment they would ever
perform. Cristopher has also been instrumental in
understanding the tools and libraries used to build
this application. While I had significant experience
with Python, the language used to write Django
and Django Rest Framework, I had yet to work
with these specific frameworks. However, I quickly
learned they offer a single solution that can help ac-
knowledge fully implement a web-based application
programming interface (API).

When initially designing this application, five
major goals were decided on to be a priority, all
of which are features which would be required at a
for the application to be usable by stakeholders.

II. BACKGROUND

With respect to flight projects, CSA conducts
assessments to ensure that any security controls
in scope are implemented appropriately and well
understood. NASA has chosen to follow the NIST
framework when conducting its assessments. The
framework is followed through NASA’s Assess-
ment and Authorization (AA), which is defined
by NIST 800-53. This document defines a yearly
process where a system is continually assessed to
ensure its reliability and compliance. The assess-
ments are conducted yearly, with the first year

https://orcid.org/0009-0006-0776-9834


having an external assessor and the following two
years with an internal assessor. This repeats. Every
third year, an external assessor must come in to
ensure compliance. The method used to evaluate and
assess compliance is through evaluating controls.
Within cybersecurity projects, each control defines
a particular requirement for how an aspect of an
application must be managed. For example, one
control might be ”Unsuccessful Logon Attempts,”
which defines how a system should respond when
a user attempts and fails to log in. NIST SP800-53
also makes accommodations for different organiza-
tional preferences through ”organizational defined
values” (ODVs). ODVs allow for each organization
following the NIST SP800 framework to respond
differently to this control. Using variables means
that, for example, one organization can only allow
ten login attempts, whereas others may only want to
allow two attempts before being locked out. Within
NASA, this A&A process must be adhered to if a
project would like to receive an Authority to Operate
(ATO). An ATO is a statement stating that the
assessment process has been followed, that the risks
of using the assessed project have been accepted,
and that the project is able to be operated. Only
authorizing Officers (sent to a project by NASA)
have the authority to issue ATOs.

III. FRAMEWORKS

A. Vue.js

Web application development is typically split
into two separate programs: the front end and the
back end. The front end is the part of the program
with which the user interacts, and for this applica-
tion, Vue.js and Vuetify were chosen. Vue.js is a
JavaScript framework that helps build dynamic and
interactive user interfaces for web applications and
typically interfaces with the backend. Generally, no
pertinent data is stored on the front end. It acts as
a gateway to the backend and is the primary way
users interact with stored data. As web development
has evolved, users generally want more responsive
websites that are performant, dynamic, visually ap-
pealing, and provide intuitive, user-friendly inter-
faces. Vue.js solves the question of performance
and keeping websites dynamic so new information
can be presented in an existing window without
reloading the screen. It starts by defining ”views,”

a single file containing HTML, cascading Style
Sheet (CSS), and JavaScript. HTML defines how
code is laid out on the screen, CSS defines what
the HTML will look like, and JavaScript defines
how different HTML elements will function when
interacting with them, such as by clicking or putting
your mouse over them. These views are generally
composed of other views. If we imagine Google,
the search bar and search button can be individual
components, composed together in a parent view
that keeps everything together.

B. Vue Components

These ”components” are isolated files containing
all necessary code for a single visual element. For
example, within CyberCAT, there is a page that
lists all existing assessments. The content shown in
their visual elements is generally the same among
all these assessments. We present the name of the
assessment, who the primary assessor is, and when
the assessment must be completed. While we could
include the code required for this visual element
several times programmatically, based on how many
assessments we want to show the user (which could
be different every time a user accesses the page),
it would be more organized to write this code a
single time inside a component. This component
would define all variables needed to present this
visual element to the user. This development form
significantly simplifies a codebase, especially when
a website grows more extensive than a few web
pages.

1) Vue-Router: The architecture of Vue.js is that
of a single-page application (SPA). Typically, when
a user navigates a website, clicking on links and
interacting with the backend, their web browser
handles things like tracking history. They can use
the back button to go to the last page they visited
and communicate with the server so that new infor-
mation can be retrieved and displayed to the user.
With Vue.js, this model is changed significantly.
When the user connects to a website using this
SPA architecture, that first attempt to connect is
the only attempt the web browser makes to connect
to the website. From here, Vue.js takes control of
changing the website’s state and ensuring that the
web browser still behaves as the user expects. SPA
applications do not have different HTML for the



Fig. 1. CyberCAT Project/Active Assessment View

web browser to request as the user navigates the
web-page. They are all defined in the previously
mentioned ”view” files, though it is still essential for
the ”back” and ”forward” buttons to function as the
user expects. This means that the back and forward
buttons need to be re-implemented to allow an SPA
to function correctly without losing the data on the
page. Vue-router is a library that helps accomplish
this desired behavior within a SPA.

2) Vuetify: With a framework that simplifies
creating dynamic and generated content, the next
question is how to create an interface that people
enjoy using and that is pleasing to the eye. The
roles of the person who can build a website and the
person who can design a website are two entirely
different disciplines, similar to how an engineer who
can construct a bridge is different from the architect
who can design the bridge. This library, along with
the help from Steven (319H), satisfies
this application’s ’architecture’ role. Before I joined,
Steven had been working with Cristopher to help
develop an interface catered to quality assurance
engineers who conduct assessments and had laid out
several critical pages of this application necessary
for building what is considered a minimum viable
product (MVP). With these interfaces designed, I
could take advantage of Steven’s layout and the pre-
build components from the Vuetify library to add
functionality to a pre-made. For instance, Vuetify’s
grid system is used throughout the SPA to match
the layout of visual elements as they have been
designed. With Vuetify being named eponymously
to Vue.js, its implementation is directed explicitly
towards using Vue.js, meaning it takes advantage

Fig. 2. CyberCAT Control Table View

of the Vue.js core features that make it easy to
implement interactive user interfaces. Two notable
features include:

• Reactive Bindings: When ‘v-model‘ is applied
to almost any Vuetify component, it behaves
like any Vue.js component and lets the de-
veloper access the pertinent data within the
component effortlessly. ‘v-model‘ is a built-
in attribute that exists when the ‘defineModel‘
function is called from within the component. It
is a two-way binding that allows data modified
inside the component to be easily accessed
from outside.

• Vue Router: Components within Vuetify in-
tended to link to other pages are often given a
‘to‘ attribute, specifically designed to interact
with Vue Router and link to pages defined
within Vue Router.

C. Django

With the features provided by the libraries noted
here, we are given more than enough features to
develop a fully-features frontend application that
can satisfy the needs of this enterprise web appli-
cation. However, it is only half of what is required
to complete this application. Without the backend,
there would be no data to present in the application’s
front end. Django is the framework that would be
used to develop the backend of this application.
While this framework was chosen before I arrived at
JPL, there are several aspects to the framework that
make it well-suited to what we’re trying to develop.
Those aspects include:



• Admin Interface: Django adds an admin inter-
face that makes it easy for any user, even those
not intimately familiar with web development,
to make changes to the application that can
be seen on the front end. This interface is
valuable as development is focused on features
that will make CyberCAT usable from the start.
An application can still be usable without an
admin interface. With this interface, we can
focus on application-critical features without
being distracted by the management side of the
application.

• Object-Relational Mapping (ORM): CyberCAT
will store its application data within a Post-
greSQL database. When interacting with this
database, programmers must manually type out
Structure Query Language (SQL) commands to
create, read, update, and delete data. While the
language is easy to learn and understand, it can
quickly become exceedingly difficult to under-
stand when large queries need to be created.
Django’s ORM helps keep the developer from
writing raw SQL by providing an equivalent
interface that is accessible through a familiar
Python object interface.

• Authentication System: On the backend,
Django has a complete authentication system
that exists within Django, which includes a
login system, password management, and user
permissions. This feature generally has to be
written into every web application, and having
that already integrated into Django, along with
extensions that allow it to integrate with the
JPL LDAP, greatly simplifies adding and im-
plementing this feature. While it’s still a feature
that needs to be integrated with the front end,
a large portion of the backend functionality for
this system is already complete for us.

These core features simplify essential backend
functionality but do not offer the front end a stan-
dardized way to communicate with the implemented
data, which is the responsibility of a REST API that
will be used for this application.

IV. DJANGO REST FRAMEWORK

While Django can render HTML directly to the
client, using that functionality when using a fron-
tend application like frontend Vue.js is not ideal, as

it already handles all visual aspects. All we need
from the front end is for the data to be serialized in
a format that the front end can process. Django Rest
Framework (DRF) is built to act as this interface.
The primary features that DRF provide that allow
for easily building API’s include:

• ViewSets: When the user is querying to a
API endpoint, that usually is done through a
ViewSet, most commonly in the from of a
ModelViewSet. This type of ViewSet provide
create, read, update, and delete (CRUD) func-
tions for the associated model. For CyberCAT,
there are many instances where the user will
want to be able to do a CRUD operation on a
single model, such as a comment, or updating
an evaluation. ModelViewsSets make this easy
to implement.

• Serializers: In order for data to be sent to the
user, it needs to be queried from the database
and transformed in to a format that can be read
and understood by the client. In this case, since
we’re interfacing with a web-application, the
go-to choice is usually JavaScript Object No-
tation (JSON) serialization, as JavaScript can
easily take advantage of an object formatted in
JSON.

• Validators: When the user is submitting data to
be stored in the database, it’s a common use-
case where the backend will want to validate
that the data passed in by the user is acceptable
data. ”Acceptable” can be considered a value
is not a number, when it’s intended to be a
boolean value, or ensuring that a given value
matches a value that is stored in the database
as a foreign-key. The goal of the validator is to
ensure that the data follows the model correctly,
or raises an exception before it reaches the
point where the data gets stored in the database.

• Permissions: At the moment CyberCAT’s only
permission model is that of either being al-
lowed to access the tool, or not being allowed
to access the tool. Though DRF implements
a system where each endpoint can have a
different required set of permissions, for who
is allowed to do what actions.



Fig. 3. CyberCAT Control Details View

V. CYBERCAT DEVELOPMENT

CyberCAT has received most it’s development in
the following areas deemed necessary for a mini-
mum viable version of this application.

A. User Authentication

Users are able to login with their JPL creden-
tials, and access assessments which they are given
permission to access. This system interfaces with a
Lightweight Directory Access Protocol server which
JPL hosts that stores all users login information.
Once authenticated, that users pertinent information
(name, badge number, section and division number,
and their supervisor), are all pulled into the database
used to store user information. From here, when the
user attempts to login, this information can be sent
to the frontend, letting the application keep track of
the current user who is accessing the database.

B. Control Table and Control Details

These two parts of the application compose where
the assessor will be spending the majority of their
time conducting their assessments. It provides a
view where they can search through existing con-
trols, add new controls which were not originally
apart of the assessment, and a drawer menu that
appears when a control is selected to modify the
details of each individual control. In the control
details view, there are three kind of evaluations that
can be made within a control.

• Findings: These are concerns that are seen
when an assessor is evaluating the control at
hand. There is usually a risk level associated
with a finding (low, moderate, high) and serve

as documentation for those who implement the
controls to update/resolve for future upgrades.

• Observations: The serve as records that have no
inherit positive or negative bearing, and act as
a note which the assessor deemed noteworthy
for recording. These can be associated with the
assessment overall as-well, and will usually be
associated with a control when it has a direct
relationship with it.

• Commendations: These are similar to obser-
vations, but generally with a positive bearing,
and serves as a way for an assessor to say an
implementation was done well. These can be
associated with assessments in the same way
which observations are.

C. Bulk Modification

Inside this table, assessors can also complete and
modify a large number of assessments all at once,
as assessors frequently find that many assessments
can be related to each other (such as assessments
all with the same label but different enhancements
on top of them). They would find it helpful to
mark multiple assessments as complete, pending,
or on hold (if their completion is being blocked).
This feature is designed to simplify the assessment
process by allowing assessors to make changes to
multiple controls simultaneously.

GLOSSARY

A&A Assessment and Authorization. 2
ATO Authority to Operate. 2
CSA Cyber Security Assurance. 1
NIST National Institute of Standards and Tech-

nology. 1, 2
ODV Organization Defined Values. 2

ACKNOWLEDGEMENTS

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, and
was sponsored by Maximizing Student Potential and
the National Aeronautics and Space Administration
(80NM0018D0004).


	Introduction
	Background
	Frameworks
	Vue.js
	Vue Components
	Vue-Router
	Vuetify

	Django

	Django Rest Framework
	CyberCAT Development
	User Authentication
	Control Table and Control Details
	Bulk Modification


